Novel CMKLR1 Inhibitors for Application in Demyelinating Disease.

Sci Rep 05 09, 2019

  • Vineet Kumar
  • Melissa LaJevic
  • Mallesh Pandrala
  • Sam A Jacobo
  • Sanjay V Malhotra
  • Brian A Zabel

Small molecules that disrupt leukocyte trafficking have proven effective in treating patients with multiple sclerosis (MS). We previously reported that chemerin receptor chemokine-like receptor 1 (CMKLR1) is required for maximal clinical and histological experimental autoimmune encephalomyelitis (EAE); and identified CMKLR1 small molecule antagonist 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) that significantly suppressed disease onset in vivo. Here we directly compared α-NETA versus FDA-approved MS drug Tecfidera for clinical efficacy in EAE; characterized key safety/toxicity parameters for α-NETA; identified structure-activity relationships among α-NETA domains and CMKLR1 inhibition; and evaluated improved α-NETA analogs for in vivo efficacy. α-NETA proved safe and superior to Tecfidera in suppressing clinical EAE. In addition, we discovered structurally differentiated α-NETA analogs (primarily ortho- or para-methoxy substitutions) with significantly improved target potency in vitro and improved efficacy in vivo. These findings suggest that α-NETA-based CMKLR1 inhibitors may prove safe and effective in treating demyelinating diseases and potentially other autoimmune disorders.


View this publication on PubMed